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Abstract. The effect of background voidage on the necessary conditions for the existence 
of compressive solimy wave solutions in the two-phase fluid flow o f ~ a  medium compacting 
under gravity is investigated. t $q = (e + $q)&"'(l - Q ) q ,  where K is the permeability of the medium, 5 + $q is the effective 
viscosity of lhe solid matrix and 4 is the voidage, It is shown that for compressive solitary wave 
solutions to exist, which satisfy certlin bounday conditions. it is necessary that the ba&ground 
voidage 40 and the exponent n lie in two regions of the (4), ")-plane when 0 < p c 1, and 
that this reduces to one region when p > 1. Necessary canditions on the exponent m are 
dso.dezived. Solitary wave. solutions for specific values of n, m. p .  g and @o are obtained 
numerically and compared. 

It is assumed that K = KoQ"(1 - 4)-p and 

1. Introduction 

Recently, Nakayama and Mason 111 investigated the existence of compressive solitary wave 
solutions of the third-order nonlinear partial differential equation 

derived by Scott and Stevenson [Z, 31 and independently form = 0 by Richter and McKenzie 
[4] and Barcilon and Richter [5 ]  in order to describe the one-dimensional migration of 
melt through the Earth's mantle. The dependent variable 4(z, f) is the voidage or volume 
fraction of melt and n > 0 and m > 0 are constant exponents in power laws relating the 
permeability of the medium and the bulk and shear viscosities of the solid matrix to the 
voidage. In a compressive solitary wave a small region of locally low voidage ascends 
through a background region of higher uniform voidage &,. In the derivation of (1) it was 
assumed that @o is small and can be approximated by 40 = 0. In this paper we will not 
make the approximation 40 = 0 in the governing partial differential equations and we will 
investigate the effect of the background voidage, 40, on the existence, speed and shape 
of the compressive solitary wave. Barcilon and Richter [5] have examined the effect of 
the background voidage on the speed and shape of rarefactive solitary waves in which a 
small region of locally high, voidage ascends through a background region of lower uniform 
voidage. 

In the study of the migration of melt through the Earth's mantle the values used for 
40 vary from 40 = 0.01 to 40 = 0.05 [2-71. Shirley [8] suggests that another probable 
application of the theory is to the compaction of igneous cumulates in magma chambers. 

0305-4470/95/247243+19$19.50 @ 1995 IOP Publishing Ltd 7243 
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Igneous cumulates consist of a solid matrix of mineral phases plus interstitial liquid and 
may be modelled as a mixture of two viscous fluids, namely the melt and the crystal matrix. 
When initially deposited there may be 5 M O %  interstitial liquid. Shirley uses an estimate 
of 40 = 0.6 for the melt fraction at-the cumulate-magma boundary. He argues that this 
high estimate for $0 does not conflict with the results of experiments on the deformation 
of partially molten granites which indicate a breakdown of the rigid matrix at 0.2-0.35 
melt fractions [9-1 I]. For example, in partially molten tholeiite lava the p i n s  form a rigid 
interlocking network at melt fractions as high as 0.5 [9] and it is not necessary for the grains 
to be interlocking to contribute to the stress in the matrix. Jaeger and Cook [12] list the 
porosity of some porous media which may serve as reference values. For spheres of equal 
size in a cubic arrangement the porosity is 0.476 while in a closely-packed rhombohedral 
arrangement it is 0.26. The porosity of lose sand is about 0.4 and for oil sands it is in the 
range 0.14.2. 

Essential to the propagation of solitary waves in a medium consisting of melt and a 
viscous permeable matrix is the dependence of the permeability, K ,  on the voidage 4. We 
will develop the theory as far as we can without specifying the relationship between K and 
4 and only specify the relationship when it becomes necessary. The law which we will use 
is 

where KO is a constant and n 2 0 and p > 0. When n = 3 and p = 2, (2) reduces to the 
BlakeKozeny-Carman equation which has been shown to agree well with experimental 
data for 40 < 0.1 by McKenzie [I31 and for 0.35 c 40 c 0.65 by Dullien 1141. In the 
derivation of the partial differential equation (I ) ,  equation (2) with p = 0 was used. When 
the voidage is no longer small p = 0 may no longer be accurate. 

Comparatively little is known about the dependence of the viscosity of the solid matrix 
on @. The effective viscosity of the solid matrix is [8,I3] 

where f *  and 0% are the bulk and shear viscosities of the solid matrix, respectively. We 
will develop the theory as far as we can without specifying the relationship between the 
effective viscosity and $. When it becomes necessary to specify a relationship we will use 

where ([ + $q)o is a constant and m 2 0 and q > 0. Barcilon and Richter [5] assume that 
6 and q are constants and therefore that q = 0 and m = 0. Scott and Stevenson [2] in the 
derivation of (I) assume that q = 0 and m 2 0 and suggest that m probably lies in the 
range 0-1. 

An outline of the paper is as follows. The equations which describe two phase fluid 
flow in a compacting medium are presented in section 2. The approximations for small 40 

are not made. In section 3 travelling wave solutions in the form of a compressive solitary 
wave are considered and the phase speed of the solitary wave is obtained. In sections 4 
and 5 the effect of the permeability of the medium and the viscosity of the solid matrix on 
the existence of compressive solitary wave solutions is investigated. Details of the analysis 
are confined to appendices A and B. The effect of the value of n, m and p on the shape 
of compressive solitary waves is examined in section 6 by considering numerical solutions. 
Finally, concluding remarks are made in section 7. 
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2. Basic equations 

The theory of two-phase fluid Row in compacting media has been formulated by several 
authors [2,3,13,15]. 

We consider a partially molten medium consisting of a solid matrix and a fluid melt 
which are modelled as two immiscible fully-connected fluids of constant but different 
densities. The density of the melt is less than the density of the solid matrix. Changes 
of phase are not included in the model. It is assumed that melting has occurred and only 
the migration of melt under the action of gravity is considered. (The effect of melting may 
be included in the governing equations if required [16-181.) The Reynolds numbers for 
the melt and solid matrix are both much less than unity and therefore inertia effects are 
neglected. By considering the macroscopic conservation of mass and momentum balance 
equations for the melt and for the solid matrix, the following two coupled nonlinear partial 
differential equations for the voidage @(z, t) and the z-component of the velocity of the 
solid matrix W ( z ,  t )  may be derived L5.191: 

--- a@ a[( l -@)W]=O 
at az 

az 
a [(< + :q )  z] - $W - (1 - @ ) g A p  = O  

where the z-coordinate is vertically upwards, p is the coefficient of shear viscosity of the 
melt, g is the acceleration due to gravity, Ap = ps - pm > 0 and ps and p m  are the densities 
of the solid matrix and melt, respectively. The barycentric reference frame is used in which 

@w + (1 - @) w = 0 (7) 
where w is the z-component of the velocity of the melt. 

We introduce dimensionless variables defined by 

where 

The characteristic length 8, is the compaction length. We also define 

We suppress the overhead bars to keep the notation simple. Expressed in dimensionless 
variables, equations (5) and (6) become 

_ _ -  a@ 
at az a [(I - @o@)W] = 0 
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The condition for a barycentric reference frame (7) takes the form 

M Nakayama and D P Mason 

@ o @ w + ( l - ~ @ ) W = O .  (14) 

Equations (12) and (13) admit the solution @ = 1, W = -1, which describes a uniform 
compaction of solid matrix relative to the melt [51. This solution is the background state on 
which the solitary waves propagate. Equation (1) follows directly from (12) and (13) if we 
make the approximation r& = 0, eliminate W and use (2) with p = 0 and (4) with q = 0. 

Equations (12) and (13) form the'basis of the subsequent analysis. 

3. Speed of solitary wave 

Consider onedimensional travelling wave solutions of (12) and (13) of the form 

$(z, 0 = *(C) W(Z,  t )  = W C )  C = z - C t  (15) 

where c is the dimensionless speed of the travelling wave. If (15) is substituted into (12) 
and (13) then the following two ordinary differential equations for @ and C2 are obtained: 

It follows directly from (16) that 

where A is a constant of integration. If C2 is eliminated from (17) using (18) then we obtain 

provided C + @ ~ A  + 0. We will see later that c+@oA # 0 provided the speed of the solitary 
wave is not equal to the speed of the compacting solid matrix. Now, for any function g(*), 

and with the aid of (20), (19) may be integrated once with respect to @ to give 

2 (Z)  =f(*) 
where 
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and B is a constant of integration. 

boundary conditions at the background state * = 1 [1,20-221: 
In order to obtain the constants A ,  B and c in (22) we impose the following three 

The boundary conditions (23) lead to compressive solitary wave solutions in the 
approximation 40 = 0 [ 1.201. If we assume that k‘(l), h‘(1) and h”(1) are finite, where the 
prime denotes differentiation with respect to +, then we find that 

f ’ ( l ) = O :  A + c - (1 - $0) =D (25) 

j ” ( 1 )  = 0 : (26) c = (1 - & ) k ‘ ( l )  - 240. 

By solving (24) to (26) for A, B and c and substituting into (22) we obtain 

where 

G ( x )  = (1 - 4ox)2k ( x )  - (1 -40) [( 1 -,@ON’( 1) - 2401x +I 1 - @o)[(l- @oo)k’(l) - (1 + 4dl. 
(28) 

The dimensionless wave speed c is given by (26). Since the characteristic speed is 
SJ tO,  the phase speed written in dimensional form is 

The phase speed is independent of the bulk and shear viscosities of the solid matrix although 
it depends on the shear viscosity of the fluid melt p. It depends significantly on the 
permeability of the background state through K(&) and k’(1). 

The velocity of the solid matrix in the background state is W = -1 and from (14) 
the velocity of the fluid melt in the background state is w = (1 - @o)/~o. Expressed in 
dimensional form we have 

We will compare the phase velocity c with W and w in section 4. 

Equation (1 1) becomes 
For future reference we list results for media in which (2) and (4) are satisfied. 
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and (27) takes the form 

M Nakayama and D P Mason 

where 

G(x) = (1 - $ o ) ~ (  1 - @ O X ) ~ - ~ X " -  (1 -@0)[n-(n+2-p)4~0lx+(l-@o)[n-l  -(n+l -p)@01. 
(34) 

Equation (29) for the phase speed becomes 

Table 1. Necessary regions of existence in the (do, n)-plane for compressive solitary wave 
solutions satisfying boundary conditions (23). N I ,  N z ,  N3, Na and N5 are defined by (41). (43, 
(46). (42) and (43). On the boundary curves 41 = N i ( n .  p) and @o = N 5 h  p) .  f"'(1) = 0 and 
higher derivatives of f (@) at @ = 1 have to be examined. Solutions do not exist for $o = 0 if 
n = o  o r n  = i for all p > 0. 

Necessarv reeions of existence Ranxe of Ilr in comoressive , I  1 .  
P 
0 < P  < 1 O < $ o  < N l ( n . p )  (region I)  Extends to @ = 0 

in the (&I, n)-plane (n > 0.0 <&I < I )  solitary wave solution 

Ndn. P )  < 41 4 N5(n.  P )  (region 2) Extends la @ = 0 

1 4 p c 2  0 4 4 1 < N i ( n . p )  (region 1) Extends to @ = 0 

p = 2  n > 1.0 44) < I (region I )  Extends to @ = 0 

4. Effect of permeability on existence of compressive solitary waves 

For a compressive solitary wave solution to exist which satisfies the boundary conditions 
(23) it is necessary that [l] 

If f"(1) = 0, further investigation, which we will not undertake here, is required to 
determine if a compressive solitary wave solution actually exists. If f"'(1) > 0, a 
compressive solitary wave solution superimposed on the background state @ = 1 and 
satisfying the boundary conditions (23) does not exist. 
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We will assume that k‘(l), k”(l), h‘(l), h”(1) and h”’(1) are finite. These conditions 
are satisfied by (32) provided 40 # 1. The case 60 = 1 ,  however, is excluded because there 
would be no solid matrix present. It follows directly from (27) and (28) that 

Equation (37) for f”(1) depends only on 40 and the permeability of the medium through 
k’(1) and k”(1). It is independent of h($) and therefore of the effective viscosity of the 
solid matrix. From (29) and (30), 

(38) 
8, 
to 

[(l - q+o)k’(l) - $01 - = c - w 

and therefore the denominator of (37) is non-zero provided the solitary wave does not 
descend at the same speed as the solid matrix. 

The quantites k’(1) and k”(1) depend on 40. To proceed further we now suppose that 
(32) is satisfied with n 2 0 and p 2 0. Then, for 0 < $0 < 1 ,  the necessary condition (35) 
takes the form 

~~ 

2 0. (39) 

Condition (39) is analysed in appendix A and the results are summarized in table 1. For 
0 < p < 1 there are two necessary regions of existence of compressive solitary wave 
solutions in the (40, n)-plane, namely 

(n  + 1 - p ) ( n  + 2 - p ) @ i  - 2n(n + I - p)& + n(n - 1 )  
- (n + 1 - PMO 

region 1: 0 < 40 < NI@, p )  region 2: N&, p )  < 40 < Ns(n, p )  (40) 

where 

n N I  = - 

N4 = 

n + 2 - p  

n f l - p  
n 

(41) 

(42) 

(43) 

N I  and NS are the roots of the quadratic form on the numerator of (39). The way in which 
the necessary regions of existence evolve in the (40, n)-plane as p increases from zero is 
shown in figure 1. For p 2 1 there is only one necessary region of existence, namely 
region 1. 

The physical significance of the boundaries 40 = N I  (n.  p )  and $0 = N&z, p )  can 
be established by considering the phase speed in dimensional form. Suppose first that 
0 < p < 1. It follows directly from (35) that 
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c h 

REGION I*. 

I 

0.1 0.2 0.1 01 05 OS 0.7 02 0.9 1.0 
(. 

Figure 1. Necessary regions in the (40. n)-plane for existence of compressive solitary wave 
solutions: ( 0 )  p = 0; (b) o c p c ~ ( p  = $); (e) p = I: ( d )  1 c p c 2 ( p  = 3); (e) p = 2; 
and U) p > 2 ( p  = 3). The quantities N I .  Nz, N1, Nd and NS are defined by (41). (49,  (46). 
(42) and (43), c is the velocity of the soliwry wave and w and W are the velocities of the fluid 
melt and solid matrix in the background state. 

It also follows from (30), (31) and (35) for W, w and c in dimensional form that c z w if 
60 < Nz(n, P )  where 
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that c t 0 if 40 < N3(n. p )  where 
n 

n + 2 - p  

c 
'e: 

N3 = 

and that c t W if $0 < N4(n, p )  where N4 is defined by (42). In the interior of region 1, 
c > w t 0 and t 0; the solitary wave ascends with a speed greater than that of the 
background melt and c is in increasing function of $0. On the boundary curve $0 = NI (n, p )  
of region 1,. & = 0. In the interior of region 2, c < W < 0 and & < 0; the solitary wave 
descends with a speed greater than the descent speed of the compacting solid matrix and c 
is a decreasing function of 40. On the boundary curve $0 = N&, p )  of region 2, = 0. 
For p > 1 the relative values of the velocities c, w and W can be analysed similarly. The 
results for the relative values of c, w and W for p > 0 are summarized in figure 1. 

The range of @ in a compressive solitary wave solution is inveggated in appendix B. 
When p t 2 it'is convenient to separate region 1 into two parts as shown in figure lw): 

region 1A: 40 3 &(n, p )  and n > 1 (47) 

region 1B: 0 < n. < 1 Nl(n, p )  <Go < N&, p ) .  (48) 

0 < n < 1 0 < $0 < 1 

When 0 < p < 2 and when p > 2 and (40, n)  belongs to region lA, the range of @ extends 
to @ = 0. When p > 2 and (40, n)  belongs to region 1B the range of @ may not extend to 
@ = 0 but instead may terminate at @ = @,,,in > 0. The results are summarized in table 1. 

5. Effect of matrix viscosity on existence of compressive solitary waves 

A solitary wave solution may be identified by the behaviour off (@) near its zeros [23]. 
A simple zero will correspond to a crest or a trough while a double zero or a triple zero 
will give an asymptotic tail to @ near the background state. A compressive solitary wave 
solution will therefore correspond to a positive solution f (@) between the triple zero of 
f(@) at the background state @ = 1 and a simple zero at a trough @ = @,,,in ~> 0. Thus 
for a compressive solitary wave solution it is necessary that 

where 0 < F(@)  < 00 for 0 < @fin < @ < 1. 

5.1. 0 < p 6 2 and p t 2 (region I A )  

It was shown in appendix B that the compressive solitary wave solution extends to @ = 0 
and therefore @,,,in = 0 in (49). The behaviour off(@) as @ + 0 is summarized in table 2. 

Consider first the general case in which (40.n) does not lie on the curve 
$Q = N*(n, p )  and n # 0. When n + m > 1, f(@) has a simple zero at @ = 0 
provided m = n. When n + m = 1, f(@) does not have a simple zero at @ = 0 and 
when 0 < n + m < 1,  f(@) has a simple zero at @ = 0 provided m = 4. The results for 
n + m > 1 generalize those of Nakayama and Mason [l] for the idealized limit $0 = 0. 

Consider next the special case in which either n = 0 or (@O,n) lies on the curve 
&, ~= Nz(n, p ) .  Now when n = 0 and 40 = 0, G(n) 0 from (34) and a compressive 
solitary wave solution does not exist. We, therefore, see from figure 1 that this special case 
applies only for p > 2. When m 2 1, f(@) does not have a simple zero at @ = 0 and 
when 0 < m < 1, f(@) has a simple zero at @ = 0 provided m = 4. 
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Table 2. The behaviour of f($) as * -f 0 for 0 < p < 2 and p > 2 (region IA). 

Condition for existence 
of a simple zem of 
fW) at ?b = 0 Conditions on n and m f(?b) as * -+ 0 

n t m = 2  

m = l  

(U) 

n t m = l  

(iii) 

O < n + m < l  

(b) n = 0 or 41 = N2(n. P) 
m~ I 

m = l  

m = n  

m = n  

m = n  

Simple zem 
does not exist 

m = $  

Simple zero 
does not exist 
Simple zero 
does not exist 

5.2. p > 2 (region I B )  

We observed in appendix B that the compressive solitary wave solution may not extend to 
@ = 0 and we may have f(@,,,ilmin) = 0 for some 0 c @,,,in < 1. For a compressive solitary 
wave solution to exist it is necessary that be a simple zero as stated in (49). 

6. Numerical solution for specific values of n, m, p and q 

In this section we will compare briefly numerical solutions for specific values of n, m, p 
and q paying particular attention to the effect of varying p. The exponent q did not occur 
in the existence criteria and therefore we will always set q = 0. Throughout this section 
we will use as characteristic length 

Unlike 6, defined in (S), SE is independent of n, m, p a& q and can be used when comparing 
solutions with different values of the exponents. The IMSL subroutine DQDAGS, which was 
designed to integrate functions which have endpoint singularities, will be used in this section 
when numerical integration is performed 1241. 
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Consider, first, compressive solitary wave solutions with n = m = 2 and p = 0, 1 and 
2. As illustrated in figure 1, for compressive solitary wave solutions to exist it is necessary 
that 40 belong to the following ranges: p = 0, 0 Q $0 Q 0.106 and 0.66 c &, < 0.789; 
p = 1, 0 Q q40 Q 0.33'; p = 2, 0 Q 40 Q 1. We choose 5 = 0 at @ = 0. The following 
results may be derived from (21) and (33) with A,* used as characteristic length. We find 
that ($)z always has a simple zero at @ = 0 consistent with the general theory. 

When n = m  = 2  and p =0, 

where 

((i I 3  g(x) = (1 - x)(A + E x  + CxZ + Dx3 + E x 4 )  + Fx3(l -$wx)21n 

where 

where 



1254 M Nakayam and D P Mason 

L 

I 

-20 -10 0 10 20 0. 
~0 ’I (b) /- 

0 0.2 0.4 0.6 0.8 1.0 
t $0 

Figure 2. (a) Comparison of compressive solitary wave solutions for n = m = 2: the analytical 
solution (65) for all values of  p. & = 0 (-); p = 0, .$g = 0.05 (----); p = 0, h = 0.7 
(- - -); p 0.5 (- - -1. (b) Width, L, of the 
compressive solitary wave at half ifs depth p = 0 (-), p = 1 (-- --) and p = 2 (- - -). 

I. Qs = 0.2 (- - -): and p = 2, &, 

and 

A = 2  B=-4+3$0 C = 2 - 9 $ 0 + 6 $ ~ .  (64) 

For $o = 0, the three solutions (51), (58) and (62) reduce to the same solution which 
can be calculated analytically 11,201: 

(65) 

For 40 > 0 the integrals in (51), (58) and (62) are evaluated numerically. The profiles of 
the solitary waves for specific values of $0 are shown in figure 2(a). 

The width, L ,  of the compressive solitaly wave at half its depth is twice the value of 5 
evaluated at * = 1. For $0 = 0, L is the same for the three solutions and can be calculated 
analytically [l]: 

*=- r z  
12 + <2’ 

For $0 > 0, L is evaluated numerically. Graphs of L plotted against $0 are presented in 
figure 2(b). The width L increases as $0 increases although, for p = 0, L is smaller in 
region 2 than in region 1. 

Consider, next, compressive solitary wave solutions with n = m = 2 2 and p = 0, 1 and 
2. For compressive solitary wave solutions to exist it is necessary that $0 belong to the 
following ranges as shown in figure 1: p = 0, 0 < $0 < 0.116 and 0.6 e $0 < 0.742; 
p = 1,  0 < bo < 0.2; p = 2, 0 < $0 e 1. We find that ($)* has a simple zero at = 0 
and also that it is a function of y = @-”’. Negative values of *’” may be included in 
the range of integration provided ($)* > 0 because the voidage @ = y2 > 0. We find 
numerically that ($)* has a negative zero which depends on p and $0. In the following 
y = -UO, where ci~ > 0, will always denote the negative zero of ($)z with smallest 
magnitude. The IMSL subroutine DZBREN, which was designed to find a zero of a real 
function, will be used to obtain the value of -a0 for each case [25]. We find numerically 
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that y = -(YO is a simple zero. We choose ( = 0 at y = -a0 and the range of integration is 
-ao < y < $T'/~. The following results may be derived from (21) and (33) with 8; taken 
as the characteristic length. 

When n = m = and p = 0, 

where 
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where 
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For $0 = 0 the three solutions (671, (73) and (78) reduce to the same solution. In each 
case -a0 = -4 and the integral can be evaluated analytically to give [1,20] 

Z 
@ =  (F) 

2 + 9  

For 40 z 0 the integrals in (67), (73)and (78) are evaluated numerically. The lower limit 
of integration, -Q, is the negative zero with least magnitude of (2)’ and therefore of 
g(y). It is found numerically that 0 < Ig’(-ao)l c CO so that y = -a0 is a simple zero of 
g(y). The values of -a0 and g’(-cuo) for specific values of 40 and p are listed in table 3. 
Although g’(-ao) c 0 for p = 0 and 0.6 c 40 < 0.742, the derivative of (2)’ with 
respect to y is positive because it contains the factor (3 - 5@0)-’. Graphs of the solitary 
waves for specific values of p and 60 are presented in figure 3(a). Each solitary wave has 
two minima, @ = 0, and one local maximum @ = ai. For p = 0 and 0 < $0 < 0.116 
the local maximum decreases steadily from @ = 0.11. to $I = 0.065. The solitary wave is 
always totally compressive. For p = 0 and 0.6 e 60 5 0.742, the local maximum decreases 
steadily from @ = 1.156 to @ = 0.939; for 0.6 e 40 5 0.7 the local maximum exceeds 
unity and the solitary wave therefore has a rarefactive part. For p = 1 and 0 < 40 < 0.2, 
the local maximum decreases steadily from @ = 0.11. to @ = 0.068, while for p = 2 and 
0 < 40 < 1 the local maximum increases slowly from @ = 0.11’ to @ = 0.134. 

Table 3. The root -eo of fib) for specific values of 4) where g(y)  is given by (68), (74) and 
(79) for n = m = 4 and p = 0, I and 2, respectively. The magnitude of the Id maximum of 
the soliwry wave is $ =e& Since 0 c lg’(-uo)l c m. -eo is a simple m o  of g(y) .  

,, . , , , . . , , , ,,. , 
P 41 -eo e: g’(-cd 

0.1.2 0 -0.33 0.11’ 7.11’ 
0 0.10 -0.264 0.070 4.124 
0 0.61 -1.067 . 1.138 -6.459 
0 0.65 -1.034 1.069 -5.617 
0 0.69 -1.003 1.006 -4.967 
0 0.70 -0.996 0.992 -4.816 
0 0.74 -0.969 0.939 -4.282 
1 0.05 -0.320 0.102 6,353 
I 0.10 -0.303 ~ 0.092 5.545 
I 0.15 -0.282 ~ 0.080 4.703 
I 0.19 -0.261 0.068 3.991 
2 0.10 -0.336 ~ 0.123 7.071 
2 0.50 -0.347 0.120 6.822 
2 0.99 -0.366 0.134 6.304 
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~ i g u r e  3. (0) comparison of compressive solitary wave solutions forn = m = $: the analytical 
solution (80) for all values o f ~ p .  4s = 0 (-1; p = 0. k = 0.1 (----); p = 0, +o = 0.61 
(---); p = 1, A, = 0.1 (-- -); md p = 2, &, = 0.5 (- --). (b)  Total width, L, of the 
compressive solitary wave at half its depth: p = 0 (-), p = 1 (----) and p = 2 (- - -). 

The total width L of the solitary wave at half its depth measured from the background 
evaluated at < = +l/&. For $0 = 0, L is the same for the state is twice the value of 

three solutions and can  be evaluated analytically [I]: 

For $0 > 0, L is evaluated numerically and graphs of L plotted against $0 are presented in 
figure 3(6). As for the solutions with n = m = 2,-L increases as $0 increases although for 
p = 0 the width for $0 in region 2 is less than in region 1. 

ascend, relative to the 
barycentric reference frame (7). at a speed greater than the ascent speed of the fluid melt in 
the background state except when $0 belongs to region 2, in which case the solitary wave 
descends at a speed greater than the descent speed of the solid ma& in the background 
state. 

and p = 3. 
We have N I  = 0.155 and N2 = 0.33'. It follows from  the^ results of section 5 that for 
NZ i $0 i 1 ,  f(@) does not have a simple zero at @ = 0 and therefore a compressive 
solitary wave solution of the kind considered here does not exist. For $0 = Nz, f(@) does 
have a simple zero at @ = 0 since m =~+. Suppose that N I  < & < N z .  Then from (21) 
and (33) with 8: taken as the characteristic length, 

3 The solitary wave solutions for n = m = 2 and n = m = 

I Finally, consider compressive solitary wave solutions with n = m = 

where 

(83) 

Let @ ~ "  be the largest zero off(@),  and therefore of g(@), as @ decreases from @ = 1. It 
is found numerically that for N I  < $0 < N2, 0 < &in < 1 which is in agreement with the 
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results of section 4. The values of @ ~ " ,  which were calculated using subroutine D Z B ~  
[U], with the corresponding values of f'(@~") for $0 in the range N I  < $o C NZ are listed 
in table 4. Since 0 < f'(qmimin) < CO, it follows that @,,,in is a simple zero of f(@). The 
solitary wave is given by 

M Nakayama and D P Mason 

Graphs of the solitary wave for specific values of $0 are presented in figure 4(a). As $o 
increases from N I  to Nz the depth of the solitary wave increases steadily from 0 to 1. 

Table 4. The zero, +Omin, of f  ($1 where f (*) is given by (82) and ibe corresponding value of 
f'(@,,,jnmin) for n =in = 1, p = 3. since O < f'(*,,,imin) < m, *,,,in is a simple .rem off(*), 

+I __ 
0.156 
0.160 
0.180 
0.200 
0.220 
0.240 
0.260 
0.280 
0.3W 
0.320 
0.330 

h. 
0.967 
0.871 
0.502 
0.271 
0,133 
0.056 
0.018 
0.003 
2 x 10-4 
3 x 10-9 
1 x 10-'0 

f'(*Inimin) 

1.369 x 
9.268 x 
9.660 x 
5.045 x 
1.311 x lo-' 
2.41 1 x 10" 
3,522 x lo-' 
4.204 x IO-' 
3.857 x 10-1 
1.907 x IO-] 
4.981 x LO-' 

4 1 

. .  
0.ol 

-60 -30 0 30 ~. ' 60 
< 

(b) 

300 IiiL 0.15 0 0.20 0.25 *. 0.30 0.35 

Figure 4. (a) Comparison of compressive soliraq wave solutions for n = m = 4, p = 3: 
&I =.0.16 (- - 4; &j = 0.2 (--~-); &, = 0.75 (----); and @o = 0.3 (-). (b) Width, L, 
of the compressive solitmy wave at half its depth for n = m = 4, p = 3. 

The width, L,  of the solitary wave at half its depth is given by twice the value of < 
evaluated at @ = f ( l  + @,,,in). A graph of L against $0 is plotted in figure 4(b). As $0 
increases from N I  to N2 the width L decreases steadily from infinity to 14.2. 

and p = 3 ascends, relative to the barycentric 
frame (7), at a speed less than the ascent speed of the fluid melt in the background state: 
0 2 c < w .  This is satisfied by all solitary wave solutions for p =- 2 with ($0, n) in region 
1B of the ($0, n)-plane. Further, it is only in this region that the depth of the solitary wave 
may not extend to @ = 0. 

The solitary wave solution €or n = m = 
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7. Concluding remarks 

We have extended the results of Nakayama and Mason [l]  on the existence of compressive 
solitary waves from the idealized case & = 0 to the complete range of values 0 Q $o < 1. 
The simple power law relating permeability to voidage was generalized to equation (2) 
which has an empirical basis. There are two regions of existence in the ($0, n)-plane when 
0 < p < 1 which evolve into one region for p > 1. 

When m = p1 > 1 assumes half-integer values in the idealized limit $0 = 0, the solitary 
waves have oscillatory structure and remain completely compressive [ 11. When n = m = 9 
and p = 0, 1 and 2 the oscillatory solitary waves remain completely compressive for Go 
belonging to region 1 of the ($0, n)-plane but, for a range of values of $0 in region 2, part . 
of the oscillatory solitary wave was rarefactive. When considering a fifth order Komweg- 
de Vries equation, Kawahara [26] found oscillatory solitary wave solutions which take both 
rarefactive and compressive values. 

A difference between the idealized limit $0 = 0 and $0 > 0 is that in the latter case 
compressive solitary wave solutions exist which do not extend to II, = 0. This occurs only 
when p z 2 and ($0, n )  belongs to region 1B of the ($0, n)-plane. We illustrated this 
exceptional case by considering the solution for n = m = 4 and p = 3. The depth of the 
solitary wave increased from 0 to 1 as $0 increased from N I  = 0.155 to NZ = 0.33:.. 

The ascent speed of the solitary wave exceeded the ascent speed of the fluid melt in 
the background state except in two cases. The first case was for 0 Q p -z 1 when ($0. n) 
belongs to region 2. The solitary wave descended with a speed greater than the descent 
speed of the solid matrix in the background state. The second case was for p 2 when 
($0, n )  belongs io region 1B: The solitary wave ascended at a speed less than that of the 
fluid melt. For this case the depth of the solitary wave may he less than unity. All velocities 
were measured relative to a barycentric reference frame. 

We found that the width of the solitary wave at half its depth increased as $0 increased 
for p = 0,1,2 with n = m = 2 and n = m = 2 ,  although the width in region 2 was less 
than that in region 1. However, for p = 3 and n = m = i, the width decreased as $0 
increased. 
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Appendix A. Necessary regions of existence in the ($0, n)-plane 

The discriminant, A, of the quadratic form on the numerator of (39) is 

A = 4n(n + 1 - p )  (2 - p). (AI) 

The subsequent analysis depends on the value of p. We will outline the analysis for 
0 Q p < 1 and then state the results for p < 1 which are derived similarly. 

When 0 < p < 1 the quadratic form on the numerator of (39) has two real roots, N I  
and Ns, defined by (41) and (43), which are distinct if n > 0. The necessary condition (39) 
takes the form 
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where N4 is defined by (42). Graphs of the curves $0 = Nl(n,  p ) .  q50 = N4(n, p )  and 
$0 = Ns(n, p )  are illustrated in figures l(a) and I(b) for p = 0 and p = 4, respectively. 
It can be verified that N I  < 0 for 0 < n < 1, 0 < N I  < 1 for n > 1, 0 < N4 < 1 and 
0 < Ns < 1 for n > 0 and N I  < N4 < Ns for n > 0. On the curve $0 = N.&, p ) ,  
f(@) = 00 by (33) and a compressive solitary wave solution does not exist. For a 
compressive solitary wave solution to exist it is therefore necessary that the point ($0, n)  
lie either in region 1 or region 2 defined by (40) and illustrated in figures 1(a) and I(b). 
On the boundary curves $0 = N , ( n ,  p )  and $0 = Ns(n, p )  higher derivatives of f(@) at 
@ = 1 would have to be examined to determine if a compressive wave solution actually 
exists. A compressive solitary wave solution does not exist at the boundary points & = 0, 
n = 1 and $0 = 0, n = 0 for all p > 0, because G(x)  

The evolution of the necessary region of existence as p increases from p = 1 to values 
of p > 2 is illustrated in figures l(c) to Iff). When p = 1, N4 = NI = 1. For p 1 
there is only one necessary region of-existence, namely region 1. As p increases from 1 to 
2, region 1 extends further into the ($0, n)-plane. When p = 2 and n = 1, G(x)  0 and 
a compressive solitary wave solution does not exist; when p = 2, region 1 consists of the 
part n > 1 of the ($0, n)-plane. When p > 2, region 1 extends into the part n < 1 of the 
($0, n)-plane. In appendix B, region 1 will be subdivided into regions 1A and 1B as shown 
in figure lff). 

M N h y a m a  and D P Mason 

0 by (34). 

Appendix B. Range of @ in a compressive solitary wave solution 

We outline the analysis for 0 < p < 1 and state the results for p 2 1. 

exists the range of @ extends to @ = 0. From (34). G(1) = 0, G'(1) = 0 and if n > 0, 
Suppose that 0 < p < 1. We show that when a compressive solitary wave solution 

(BU W O )  = (1 - boo)@ + 1 - PWZ -&I). 

Also 

Consider first points (q50.n) which lie in region 1 so that 0 < $o < N l ( n , p ) .  Then 
G"(x) > 0 for 0 < x < 1 and therefore G(x)  is concave up for 0 < x < 1. Since G(1) = 0 
and G'(1) = 0 it follows that G(x)  > 0 for 0 < x < 1. Also the terms outside the integral 
in (33) are positive since $0 < N&,-p).  Hence f(@) > 0 for 0 < @ < 1 and the range 
of the compressive solitary wave extends to $ = 0. Consider next points ($0. n)  which lie 
in region 2 so that N4(n, p )  < $0 < Ns(n, p ) .  If 0 < n < 1 then N1 < 0 and therefore 
G"(x) < 0 for 0 < x < I ;  G ( x )  is concave down for 0 < x < 1 and since G(1) = 0 and 
G'(1) = 0 if follows that G(x)  < 0 for 0 < x < 1. If n > 1 then 0 < N I @ ,  p )  < 1 and 
G"(x) < 0 for Nl(n, p ) / &  < x < 1 and G"(x) > 0 for 0 < Y< Nl(n ,  p ) /&;  G(x) is 
concave down for Nl(n ,  p)/q50 < x c 1 and concave up for 0 -= x < Nl(n ,  p)/$o. Since 
G(1) = 0, G'(1) = 0 and G(0) < 0 it follows that G(x)  < 0 for 0 < x < 1, but the 
terms outside the integral in (33) are negative when $0 N 4 ( 4  p ) .  Thus f(@) > 0 for 
0 < II. < 1 and the range of the solitary wave extends to @ = 0. 

Similarly it can be shown, when 1 < p 4 2 and also when p > 2 and ($0, n)  belongs 
to region 1A defined by (47), that the range of @ extends to @ = 0. When p > 2 and 
($0, n)  belongs to region 1B defined by (48), the range of @ may not extend to $f = 0; 
since G(0) c 0 it follows that G ( x )  < 0 for part of the interval 0 < x < 1 and therefore 
f(@) may vanish at some point @ = @,,,in 0. 
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