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On the effect of background voidage on compressive solitary
waves in compacting media

M Nakayama and D P Mason

Centre for Nonlinear Studies and Department of Computational & Applied Mathematics,
University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa

Receivéd 24 April 1995, in final form 11 September 1995

Abstract, The effect of background voidage on the necessary conditions for the existence
of compressive solitary wave sclutions in the two-phase fluid flow of a mediutm compacting
under gravity is investigated. It is assumed that K = Kpg"(1 — ¢)~F and & + #;:7 =
£+ %n)ur,b"”’{l — ¢4, where K is the permeability of the medium, & + -}n is the effective
viscosity of the solid matrix and ¢ is the voidage. It is shown that for compressive solitary wave
solutions to exist, which satisfy certain boundary conditions, it is necessary that the background
voidage ¢ and the exponent » {ie in two regions of the (fqy, n)-plane when 0 < p < 1, and
that this reduces to one region when p = 1. Necessary conditions on the exponent m are
also derived. Solitary wave solutions for specific values of #, m, p, g and ¢y are obtained
numerically and compared. i

1. Introduction

Recently, Nakayama and Mason [1] investigated the existence of compressive solitary wave
solutions of the third-order nonlinear partial differential equation

3 8l . 3 (1 36\ _
wralr (-5 G)]= W

derived by Scott and Stevenson [2,3] and independently for m = 0 by Richter and McKenzie
[4] and Barcilon and Richter [5] in order to describe the one-dimeunsional migration of
melt through the Earth’s mantle. The dependent variable ¢(z, #) is the voidage or volume
fraction of melt and n 2 0 and m > 0 are constant exponents in power laws relating the
permeability of the medium and the bulk and shear viscosities of the solid matrix to the
voidage. In a compressive solitary wave a small region of locally low voidage ascends
through a background region of higher uniform voidage ¢y. In the derivation of (1) it was
assumed that ¢ is small and can be approximated by ¢y = 0. In this paper we will not
make the approximation ¢o = 0 in the governing partial differential equations and we will
investigate the effect of the background voidage, ¢, on the existence, speed and shape
of the compressive solitary wave. Barcilon and Richter [5] have examined the effect of
the background voidage on the speed and shape of rarefactive solitary waves in which a
smal} region of locally high voidage ascends through a background region of lower uniform
voidage.

In the study of the migration of melt through the Earth’s raantle the values used for
@p vary from ¢y = 0.01 to ¢y = 0.05 [2-7]. Shirley [8] suggests that another probable
application of the theory is to the compaction of igneous cumulates in magma chambers.
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Igneous cumulates consist of a solid matrix of mineral phases plus interstitial liquid and
may be maodelled as a mixture of two viscous fluids, namely the melt and the crystal matrix.
When initially deposited there may be 50-60% interstitial liquid. Shirley uses an estimate
of ¢ = 0.6 for the melt fraction at the cumulate-magma boundary. He argues that this
high estimate for ¢ does not conflict with the results of experiments on the deformation
of partially molten granites which indicate a breakdown of the rigid matrix at 0.2-0.35
melt fractions [9-11]. For example, in partially molten tholeiite lava the grains form a rigid
intertocking network at melt fractions as high as 0.5 [S] and it is not necessary for the grains
to be interlocking to contribute to the stress in the matrix. Jaeger and Cook [12] list the
porosity of some porous media which may serve as reference values., For spheres of equal
size in a cubic arrangement the porosity is 0.476 while in a closely-packed rhombohedral
arrangement it is 0.26. The porosity of lose sand is about 0.4 and for oil sands it is in the
range 0.1-0.2,

Essential to the propagation of solitary waves in a medium consisting of melt and a
viscous permeable matrix is the dependence of the permeability, K, on the voidage ¢. We
will develop the theory as far as we can without specifying the relationship between K and
¢ and only specify the relationship when it becomes necessary. The law which we will use
is

n
K= Ko™ - (2)
(1-¢)?

where Ky is a constant and n > 0 and p 2 0. When n =3 and p = 2, (2) reduces to the
Blake-Kozeny-Carman equation which has been shown to agree well with experimental
data for ¢y < 0.1 by McKenzie [13] and for 0.35 < ¢p < 0.65 by Dullien [14]. In the
derivation of the partial differential equation (1), equation (2) with p = 0 was used, When
the voidage is no longer small p = 0 may no longer be accurate.

Comparatively liftle is known about the dependence of the viscosity of the solid matrix
on ¢. The effective viscosity of the solid matrix is [8, 13]

E+3n=0E"+35101-9) 3)
where £* and 5* are the bulk and shear viscosities of the solid matrix, respectively, We
will develop the theory as far as we can without specifying the relationship between the
effective viscosity and ¢». When it becomes necessary to specify a relationship we will use

(& + 5mo(l ~ 3)7
E+in= 3;,,1—“

where (£ + 7)o is a constant and m > 0 and ¢ > 0. Barcilon and Richter [5] assume that
£ and 75 are constants and therefore that ¢ = 0 and m = 0. Scott and Stevenson [2] in the
derivation of (1) assume that ¢ = O and m 2 0 and suggest that m probably lies in the
range 0-1.

An outline of the paper is as follows. The equations which describe two phase fluid
flow in a compacting medium are presented in section 2. The approximations for small ¢y
are not made. In section 3 travelling wave solutions in the form of a compressive solitary
wave are considered and the phase speed of the solitary wave is obtained. In sections 4
and 5 the effect of the permeability of the medium and the viscosity of the solid matrix on
the existence of compressive solitary wave solutions is investigated. Details of the analysis
are confined to appendices A and B. The effect of the value of n,m and p on the shape
of compressive solitary waves is exatnined in section 6 by considering numerical solutions.
Finally, concluding remarks are made in section 7.

®
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2. Basic equations

The theory of twe-phase fluid flow in compacting media has been formulated by several
authors [2,3, 13, 15].

We consider a partially molten medium consisting of a solid matrix and a fluid melt
which are modelled as two immiscible fully-connected fluids of constant but different
densities. The density of the melt is less than the density of the solid matrix. Changes’
of phase are not included in the model. It is assumed that melting has occurred and only
the migration of melt under the action of gravity is considered. (The effect of melting may
be included in the governing equations if required [16~18].) The Reynolds numbers for
the melt and solid matrix are both much less than unity and therefore inertia effects are
neglected. By considering the macroscopic conservation of mass and momentum balance
equations for the melt and for the solid matrix, the following two coupled nonlinear partial
differential equations for the voidage ¢(z,¢) and the z-component of the velocity of the
solid matrix W(z, r) may be derived [5,19]:

g 8

5—3—2[(1 —-$W]=0 (5?
a 4 N aW M _ '
a—z[(f‘i'g’?) a—z]—EW—(l—cp)gAp—O (6)

where the z-coordinate is vertically upwards, w is the coefficient of shear viscosity of the
melt, g is the acceleration due to gravity, Ap = p;— pn > 0 and p; and p,, are the densities
of the solid matrix and melt, respectively. The barycentric reference frame is used in which

pw+(1—g)W =10 - )]

where w is the z-component of the velocity of the melt.
We introduce dimensionless variables defined by

-2 w2 2 slE Gl
¢—¢'u W_Wo Y W ‘% t—tg' ®
where
o U t0Ebok@y) (ﬂ%)(&(@i + %n(qbo)))” R
‘ 1/2
_ g0 _ ()t 37{¢0)) &0 (10)
Weo K{go) (1—do)gdp’
The characteristic length §; is the compaction length. We also define
. Kigop) | - E(dod) + 2n(god)
k(d)y = () = .- 11
D=%60 "7 g0+ e o

We suppress the overhead bars to keep the notation simple. Expressed in dimensionless
variables, equations (5) and (6) become
a¢

d
35~ 3.l — 4op)W] =0 - 12

d W w {1 —doep)
— | A pulalng — =0, 13
az( @ az) RS a3)
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The condition for a baryceniric reference frame (7) takes the form
dopw + (1 — o) W = 0. (14)

Equations (12} and (13) admit the solution ¢ = I, W = —1, which describes a uniform
compaction of solid matrix relative to the melt (51. This solution is the background state on
which the solitary waves propagate. Equation (1) follows directly from (12) and (13) if we
make the approximation ¢y = 0, eliminate W and use (2} with p = 0 and (4) with g = 0.

Equations (12) and (13) form the basis of the subsequent analysis.

3. Speed of solitary wave
Consider one-dimenstonal travelling wave solutions of (12) and (13) of the form

¢z, 1) =) Wiz, 1) = Q(0) {=z—ct (15

where ¢ is the dimensionless speed of the travelling wave. If (15) is substituted into (12)
and (13) then the following two ordinary differential equations for v and £ are obtained:

d
d‘ff 1 = w12 = (16)
as Q (1 — gorr)
a ( SQFr ) RS a7)
It follows directly from (16) that
__fAtcy)
SR g (18)

where A is a constant of integration. If 2 is eliminated from (17) using (18) then we obtain

4 o) (o dion (L bV PEGD)

provided ¢+ ¢pA 7 0. We will see later that ¢ +¢gA # 0 provided the speed of the solitary
wave is not equal to the speed of the compacting solid matrix. Now, for any function g(v},

Wy 2 ("’) 20
((m L) - 2g(md¢( W) ) (20)

and with the aid of (20}, (19) may be integrated once with respect to Y to give

(19}

d'l!f 2 _ .
(E) = £ @1)
where
21— [ [ B = 40k — (L= o)A + cx)]dx}
T = Crana —erm | f (1 = ory

(22)
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and B is a constarit of integration.

In order to obtain the constants A, B and ¢ in (22) we impose the following three
boundary conditions at the background state ¥ = 1 [1,20-22]:

| df & f
1) = —=—(1)=0 —()=0. 23
f)y=0 dxﬁ() dwz() (23)

The boundary conditions (23} lead to compressive solitary wave solutions in the
approximation ¢g = 0 [1.20]. If we assume that £'(1), #’(1) and ~”(1) are finite, where the
prime denotes differentiation with respect to i, then we find that

F)=0: B = j’ A()I(T — ¢'ox)zf(fg()l-_(;o;)t§u)(A +enldx 8
FQ)y=0: A+c—(I—¢o)=0 . (25)
Ff)=0: ¢ = (1 — go)k'(1) — 2. (26)
By solving (24) to (26) for A, B and ¢ and substituting into (22) we obtain
_ 4 1

1) = gL D = ) fw Koy @

where .
G(x) = (1— ox)*k(x) — (1 — do)[(1 — G0l (1) — 2¢hp]x + (1 — o) [(1 — po)k'(1) ~ (1 + o).
(28)

The dimensionless wave speed ¢ is given by (26). Since the characteristic speed is
8¢/ to, the phase speed written in dimensional form is

(1 — o) K (do)ghrp _

-(29
dot @9

c=[(1 —go)k'(1) — 2¢’u]%-= ({1 — dho)k"(1) — 2¢b]
The phase speed is independent of the bulk and shear viscosities of the solid matrix although
it depends on the shear viscosity of the fluid melt g. It depends significantly on the
permeability of the background state through K(¢y) and £'(1}.

The velocity of the solid matrix in the background state is W = —1 and from (14)
the velocity of the fluid melt in the background state is w = (1 — ¢bp) /. Expressed in
dimensional form we have

5
W= =0 = (1~ go)K (g} 22 (30)
0 j1a
5
w = (1 "“"’)E = (1 — $0)* K (do)e Ap. (31)

. We will compare the phase velocity ¢ with W and w in section 4.
For future reference we list results for media in which (2) and (4) are satisfied.
Equation (11} becomes ’ ’

k(g) = (1 —go)'o" 1) = (1 —¢og)?

U= dod)? 1 —doyem (32)
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and (27) takes the form

fh) = (33)

2(1 = oy )2 y2" f ! Glx)dx
(1 —¢0)?~¢*n — (n+ 1 — plgol Jy x"+7(1 — gox)>—P~2

where

G(x) = (1—go)" (1—¢ox)*""x" — (1—go) [n—(n+2— p)golx-+(1—o)[n—1—(n-+1- p)pol.
(34)

Equation (29) for the phase speed becomes

Pr Kog Ao

—_— 35
(1 gyl 3

c=[n—(n+2—p)¢01‘:7:=[n—(n+2—p>¢01

Table 1. Necessary regions of existence in the (¢p, n)-plane for compressive solitary wave
solutions satisfying boundary conditions (23). Ny, M2, N3, N and Ns are defined by (41), (45),
(46}, (42} and (43). On the boundary curves ¢p = N {n, p) and ¢o = N5(n, p), F(1) =0 and
higher derivatives of f(y) at ¥ = 1 have to be examined. Solutions do not exist for ¢p = 0 if
n=0orn=1forall p 20

Necessary regions of existence Range of ¢ in compressive
P in the (¢p, n)-plane (n 20,0 K ¢y < 1) solitary wave solution
0<p=<l O < dp < Nin,p) (region 1) Extends to ¥ =0
Ny{n, p) < ¢0 € Ns(n, p) {region 2) Extends to ¢ =0
I<p<2 < ¢y < N(n,p) (region 1) Extendsto ¢ =0
p=2 n>10<gy <1 {region 1) Extends to v =0
nx>1, 0Lgy=<l . Extends to ¢ =0
p>2 0gngl, do2 Nl ) (region 1A) Extends to ¢ = 0

0, N p) < do < Na(n, p) (region 1B} May not extend to ¢ =0

4, Effect of permeability on existence of compressive solitary waves

For a compressive solitary wave solution to exist which satisfies the boundary conditions
{23) it is necessary that [1]

&F
77V <O (36)
If f7(1) = 0, further investigation, which we will not undertake here, is required to
determine if a compressive solitary wave solution actually exists. If F*(1) > 0, a
compressive solitary wave solution superimposed on the background state ¢ = 1 and
satisfying the boundary conditions {23) does not exist.
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We will assume that £/(1), £7(1), A1), £7(1) and A" (1) are finite. These conditions
are satisfied by (32) provided ¢y == 1. The case ¢y = 1, however, is excluded because there
would be no solid matrix present. It follows directly from (27) and (28) that

210 - Bo)*k" (1) — 4o (1 — do)k'(1) + 2651
(1 — o)1 — ¢}k’ (1) — o] )

Equation (37) for (1) depends only on ¢ and the permeability of the medium through
&'(1) and £7(1). It is independent of k(i) and therefore of the effective viscosity of the

solid matrix. From {29) and (30),

= (37

[(1 = ) (1) — %Jff e W (38)

and therefore the denominator of (37) is non-zero provided the solitary wave does not
descend at the same speed as the solid matrix.

The gquantites %’(1) and £”(1) depend on ¢g. To proceed further we now suppose that
(32) is satisfied with n > 0 and p 2 0. Then, for 0 < ¢y < 1, the necessary condition (38)
takes the form

n+l1—-phr+2-— p)¢o—2n(n+ I —P)¢O+n(n—1)

=it 1- ) G2

Condition (39) is analysed in appendix A and the results are summarized in table 1. For
0 € p < 1 there are two necessary regions of existence of compressive solitary wave
solutions in the (¢y, #)-plane, namely

region 1: 0 < ¢y € Ni(n, p) region 2: Na(n, p)} < ¢pg < Ns(n, ) (40}
where
n 1 n(2 - p) 12
Ny = - 41
'Thas2-p (n+2-p)(n+1—p) @1
n
Ny = ——m : o
4 n+l—-p “2)
n 1 n2—p) \'2 :
‘N5 = . 43
5 n+2—p+(n+2—p)(n+1—p) “3)

Ny and Ns are the roots of the quadratic form on the numerator of (39). The way in which
the necessary regions of existence evolve in the (¢, n)-plane as p increases from zero is
shown in figure 1. For p 2 [ there is only one necessary region of existence, namely
region 1.

The physical significance of the boundaries ¢ = Ni(n, p) and ¢¢ = Ns(n, p) can
be established by considering the phase speed in dimensional form. Suppose first that
0 < p < 1. It follows directly from (35) that

n=2

= (12— pYn+ 1 — p)(N; — ho)(Ns — o) 208 AP

Tor ¢ —¢ o (44)
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Figure 1. Necessary regions in the (g, n)-plane for existence of compressive solitary wave
solutions: () p=0; (B) 0 < p < 1(p=-§);(c)p= L@l <p<2(p=%); E@p=2;
and {f) p > 2 {p = 3). The quantities ¥, N2, N3, N4 and Ns are defined by (41), (45), (46),

(42) and (43), ¢ is the velocity of the solitary wave and w and W are the velocities of the fAuid
melt and solid matrix in the background state.

It also follows from (30), (31) and (35) for W, w and ¢ in dimensional form that ¢ > w if

o < Na(n, p) where '
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n—1

Nyo= oo— : ‘ -

L gy : 7 : - )
that ¢ > O if ¢y < N3(n, p} where
s, n
. N=___

*Tat2-p “6)

- and that ¢ > W if ¢g < Ny(n, p) where Ny is defined by (42). In the interior of region 1,
c>w> 0 and -ai"- > 0; the solitary wave ascends with a speed greater than that of the
background melt and ¢ is in increasing function of ¢g. On the boundary carve ¢g = N1(n, p)
of region 1, &£ 35 = 0. In the interior of region 2, c < W <0 and -2 35 < 0; the solitary wave
descends with a speed greater than the descent speed of the compacting solid matrix and ¢
is a decreasing function of ¢. On the boundary curve ¢y = Ns(n, p) of region 2, ;Tfﬂ =0.
For p 2 1 the relative values of the velocities ¢, w and W can be analysed similarly. The
resuits for the relative values of ¢, w and W for p 2 0 are summarized in figure 1.

The range of { in a compressive solitary wave solution is investigated in appendix B.
When p > 2 it'is convenient to separate region 1 into two parts as shown in figure 1():

region 1A: 0l do = Naln, p) and 1 > 1 0K ¢gp<1 4n
region 1B: 0gngl Ni(n, p) € ¢ < Na(n, p). (48)

When 0 < p € 2 and when p > 2 and (¢, n) belongs to region 1A, the range of ¥ extends
to ¥ = 0. When p > 2 and (¢, n) belongs to region 1B the range of ¥ may not extend to
1 = 0 but instead may terminate at ¥ = yrpn > 0. The results are summarized in table 1.

5. Effect of matrix viscosity on existence of compressive solitary waves

A solitary wave solution may be identified by the behaviour of f(y) near its zeros [23].
A simple zero will correspond to a crest or a trough while a double zero or a triple zero
will give an asymptotic tail to ¥ near the background state. A compressive solitary wave
solution will therefore correspond to a positive solution f(i) between the triple zero of
F{y) at the background state ¢ = 1 and a simple zero at a trough ¥ = iy 2 0. Thus
for a compressive solitary wave solution it is necessary that

FQ¥) = (¥ — Yrmin) F (4 (49)
where 0 < F(y¥) < oo for 0 g y{rmn ¥ < L.

510K p<2andp > 2 (region IA)

Tt was shown in appendix B that the compressive solitary wave solution extends to ¢ = 0
and therefore Y¥min = 0 in (49). The behaviour of F{yr) as ¥ — 0 is summarized in table 2.

Consider first the general case in which (¢p.n) does not lie on the curve
¢p = Na{r,p) and n £ 0. Wher n+m > 1, f(¥) has a simple zero at ¢ =
provided m = n. When n+m = 1, f(¥} does not have a simple zero at v = 0 and
when 0 <n+m < 1, f(¢) has a simple zero at ¥ = Q provided m = % The results for
n+m > 1 generalize those of Nakayama and Mason [1] for the idealized limit ¢p = 0.

Consider next the special case in which either # = 0 or (¢q, 7) lies on the curve
¢y = Na(n, p). Now when n = 0 and ¢y = 0, G{x) = 0 from (34) and a compressive
solitary wave solution does not exist. We, therefore, see from figure 1 that this special case
applies only for p > 2. When m 2 1, f(yr) does not have a sunple zero at 1,!r = {} and
when 0 < m < I, f(¥) has a simple zero at ¥ = 0 provided m = 2
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Table 2. The behaviour of F(y) as ¢ — 0 for 0 < p < 2 and p > 2 (region 1A).

Condition for existence
of a simple zero of

Conditions on n and m fl)asyr—0 ‘ f@)at4 =0
(a) n % 0 and ¢g % Ma(n, p)

o

ndm>1

2Ny — 45[))‘,!'1’"'—”“ a
nt+m#E2,m#1 a0 = goyree] m=n
x(1 + O(pmtm=1) 'll' O™} + O
- MRt
Rbm=2 2{Nz — dulyr m=n

(N3 — do)(m +m — (1 ~ gp)r—e+
x(1 + O(™) + O In )
2(N3 ~ gyt
(N3 — gu}n +m — D — go)p-a+!
x(1 +O@F) + Oy In )

(if)
(N2 ~ d) ¥ (= In ) Fi=m Simple zera
ntm=1 (N3 — o) (| — g )P+ (1 +0 (W)) does Ex,mt exist
(iii)
2(Ng — o) g™ o
O<ntm<l s = 0L = = m)(1 = go)re ] m=1
x(14+ Oy —"=m)
(b} n =0 or ¢y = Na(n, p)
m>1 oty Simple zero
does not exist
m=1 O (= In ) Simple zero
does not exist
0sm<1 o) m=4

5.2. p > 2 (region IB)

We observed in appendix B that the compressive solitary wave solution may not extend to
¥ = 0 and we may have f(yrmn) =0 for some 0 < ¥min < 1. For a compressive solitary
wave solution to exist it is necessary that i, be a simple zero as stated in (49).

6. Numerical solution for specific values of n, m, p and ¢

In this section we will compare briefly numerical solutions for specific values of #, m, p
and g paying particular attention to the effect of varying p. The exponent ¢ did not occur
in the existence criteria and therefore we will always set g = 0. Throughout this section
we will use as characteristic length

4 1/2
= (ﬂf%i) _ 0

Unlike &; defined in (9), 87 is independent of n, m, p and ¢ and can be used when comparing
solutions with different values of the exponents. The IMSL subroutine DQDAGS, which was
designed to integrate functions which have endpoint singularities, will be used in this section
when numerical integration is performed [24].
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Consider, first, compressive solitary wave solutions with n =m =2 and p = 0, | and
2. As illustrated in figure I, for compressive solitary wave solutions to exist it is necessary
that ¢ belong to the following ranges: p =0, 0 < ¢ < 0.106 and 0.66" < ¢ < 0.789;
p=1L0< <033, p=20¢€ ¢ <1 Wechoose ¢ =0 at v+ = 0. The following
results may be derived from (21) and (33) with 7 used as characteristic length. We find
that (%’?)2 always has a simple zero at Y = 0 consistent with the general theory.
Whenn=m=2and p =0,

v 1 2 — 3¢\
t =+3(1 "¢0)[o *12(1 — igx) ( g(x) ) * oY

where

2x) = (1 —x)A+ Bx+Cx*+ Dx® + Ex¥) + Fx3(1 — ¢px)*In (1_1%) (52)

(1 — go)x
and
A =2(1 — ¢o)(1 = 3¢g) B = (1 — gho)(—4 + 11¢p ~ 15¢2) (53)
C =2~ 9¢p + 66¢5 — 113¢3 + 600 (54)
D = ¢o(—4 + 300 — 2333 + 456¢3 — 27093) (55)
E = ¢2(2 — 17¢g + 1443 — 29497 + 180¢3) (56)
F = 601 — 12 + 4643 — 64¢2 -+ 30¢7). (57)

Whenn=m=2and p=1,

. 4 dx

£ =601~ ¢’°)fo 212(1 = gox)PP{g(x)]'2 ' ©8)
where
g(x) = (1 — xXA + Bx + Cx?+ Dx*) + Ex*(1 — ¢px)1In (1—_—@—) (59)
. : (1 — ¢olx
and
A = 2(1 — 2¢) B = —4 4 9¢y — 842 C =2 — ¢ + 313 — 243 (60)
D = ¢o(—2 + 13¢ — 5405 + 48¢3) E = 6¢p(1 — ¢o)(1 — 5S¢ + 855). 61)

Whenn=m=2and p=2,
¥ dx .
— _ /2
£ =324 fo S = goxPLa T €

where

g(x) = (1 —x)}(A + Bx + Cx?) + 6¢g(1 — ¢o)?x> In (ﬂ) (63)
(1 — go)x
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Figure 2. (u) Comparison of compressive solitary wave solutions for n = m = 2: the analytical
solution (65) for all values of p, o =0 (—); p =0, ¢o =005 (---); p =0, ¢ =07

- p=1L¢p=02(--)and p =2, ¢y = 0.5 (———). (b) Width, L, of the

compressive solitary wave at half its depth: p=0(——), p=1(---)and p =2 (— — —).
and

A=2 = —4 + 3¢y C =2~ 9y + 6¢3. (64)

For ¢y = 0, the three solutions (51), (58) and (62) reduce o the same solution which
can be calculated analytically [1,20]:

;-2
V=gie ' (6

For ¢ > 0 the integrals in (51), (58) and (62) are evaluated numerically, The profiles of
the solitary waves Tor specific values of ¢ are shown in figure 2(a).

The width, L, of the compressive solitary wave at half its depth is twice the value of ¢
evaluated at o = % For ¢y = 0, L is the same for the three solutions and can be calculated
analytically [1]:

12
=23 [ g =4S, (66)

xl/Z(l — X2

For ¢p > 0, L is evaluated numerically. Graphs of L plotted against ¢y are presented in
figure 2(b). The width L increases as ¢y increases although, for p = 0, L is smaller in
region 2 than in region 1.

Consider, next, compressive solitary wave solutions with # = m = — and p=0, ] and
2. For compressive solitary wave solutions to exist it is necessary that ¢p belong to the
following ranges as shown in figure 1: p =0, 0 < ¢ < S 0.116 and 0.6 < ¢p < 0.742;
p=1,0<dss02;p=2,0<y<1. Weﬁndthat( )lhas 2 simple zero at ¢ =0
and also that it is a function of y = ¢'/2. Negative values of y!/? mayr be included in
the range of integration provided ( )2 > 0 because the voidage ¥ = y% > 0. We find

numerically that { d;)z has a negatwe zero which depends on p and ¢g. In the following

y = —oq, where op > 0, will always denote the negative zero of (g—%)z with smallest
magnitude. The IMSL subroutine DZBREN, which was designed to find a zero of a real
function, will be used to obtain the value of —eyp for each case [25]. We find numerically
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that y = —ay is a simple zero. We choose ¢ =0 at y = —og and the range of integration is
—op € ¥ < Y12, The following results may be derived from (21) and (33) with 3% taken
as the characteristic length.

Whenn=m=%andp-—'0,

v 1 3 — 50 \M?
= - d 67
¢=£2l—=do) | (1—¢oy2)( 20) ) Y €7

where
g(y) = (1 — YA+ By + Cy* + Dy* + E¥* + Fy* + Gy* + HY")

401 ) 1_¢0y2)
A l"((b—%)y2

+ 494 y*(1 — oy®)? In (8 ; z‘iz ;Ei fzéﬁi) (68)
and
A =B = (1—¢o)(1—5¢¢) C = (1 — ¢o}(—5 + 13 — 2047) (69)
D =3+ 18¢g — 33¢% + 2045 E = ¢(10 — 57¢0 + 1317 — 90¢3) (70)
F = g(—6 — 57¢hp + 1312 — 9043) G = ¢p3(—5 + 35¢0 — 8407 + 60¢3) (71)
H = ¢5(3 -+ 35¢0 — 845 + 6063) K = 6y(1 — ¢o)(—3 + ¢ — 10¢2). (72)

Whenn=m=3and p=1,
(=223 -y [ & (73)

—y (1= Goy?)¥2g(y)]"/2

where

|- 2
g0 = (L= y)A+ By + Cy*+ Dy + Ey* + Fy*) + Gy*(1 = ¢oy*) In ((1 -~ iﬁi'yz)

ARt}
and
A=B=1-3¢ = —5 + 10¢ — 95 (75)
D=3+10¢—-9¢f - E=¢uo(5— 176y + 1847) (76)
F=go(-3—17¢o+18¢3) G = o(—12 + 26¢0 — 18¢7). (77)
Whenn:m:%andp=2,
- 12 " dy
¢ =209 f_ T30y @
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where

_ 2
g() = (1~ Pt +y+(=5+2¢0)y" + 3+ 2¢60)°] — 2¢0(3 — go)y* In ((i - zgyz)

1/2 12
461 (a N0+ o 0 9

u+¢mﬂu~¢m

For ¢ = 0 the three solutions (67), (73) and (78) reduce to the same solution. In each
case —tp = —% and the integral can be evaluated analytically to give [1,20]

2 -3y

w"(§2+9) . (80)
For ¢ > 0 the integrals in (67), {73) and (78) are evaluated numerically The lower limit
of integration, —wg, is the negative zero with least magnitude of ( )2 and therefore of
g(¥). It is found numerically that 0 < g’(—og)| < oc so that y = —ozg is a simple zero of
g(y). The values of —g and g'(—ep) for specific values of ¢ and p are listed in table 3.
Although g'(—ean) < 0 for p = 0 and 0.6 < ¢y £ 0.742, the derivative of (%)2 with
respect to y is positive because it contains the factor (3 — 5¢g)~!. Graphs of the solitary
waves for specific values of p and ¢y are presented in ﬁgure 3(a). Each solitary wave has
two minima, ¥ = 0, and one local maximum ¥ = ccu For p=0and 0 € ¢ < 0.116
the local maximum decreases steadily from = 0.11" to ¥ = 0.065. The solitary wave is
always totally compressive. For p = 0 and 0.6 < ¢g < 0.742, the local maximum decreases
steadily from ¥ = 1.156 to ¥ = (.939; for 0.6 < ¢ < 0.7 the local maximum exceeds
unity and the solitary wave therefore has a rarefactive part. For p =1 and 0 £ ¢y < 0.2,

the local maximum decreases steadily from 4 = 0.11" to ¥ = 0.068, while for p =2 and
0 < ¢o < 1 the local maximum increases slowly from ¢ = 0.11" to ¥ =0.134,

Table 3. The root —ay of g(y) for specific values of ¢y where g(y) is given by (68), (74) and
(M forn=m= -g— and p =10, | and 2, respectively. The magnitude of the local maximum of
the solitary wave is = d‘zl. Since 0 < [¢'(—ap)] < co, —ay is a simple zero of g(y),

7 ] —ay oy g (—ay)
0,1,2 0 —(.3% 0.11 711
Q 0.10 =0.264 0.070 4,124
4] 061 —1.067 _ 1138 —6459
0 0.65 —1.034 1.069 —5.617
0 069 —1.003 1.006 —4.967
0 070  —0.995 0992 —4816
0 0.74 —-0969 0.939 —4282
1 005 —0320 0.102 6.353
[ 010 -0.303 . 0.092 5545
1 0,15 =0.282 _ 0.080 4,703
1 019 0261 0.068 3.991
2 010 -0336  0.123 7.071
2 050 0347 0.120 6.822
2 053 —0.368 0.134 6.304
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Figure 3. {(2) Comp:m'éon of compressive solitary wave solutions forn =m = %: the analytical
solution (80) for all values of p, gy = 0 ¢ Y p=0,dp=01CG---2; p=20, ¢y =061
- p=1¢g=01{---)and p=2 ¢ =05 (———). (b) Total width, L, of the
compressive solitary wave at half its depth: p=0(—), p=1(---and p=2 (— ——).

The total width L of the solitary wave at half its depth measured from the background
state is twice the value of ¢ evaluated at { = +1 /+/2. For ¢g = 0, L is the same for the
three solutions and can be evaluated analytically [11:

+1/2 dy ) 7
= = 11.31. 1
“Af,. aoyeyErE= ! &0

For ¢ > 0, L is evaluated numerically and graphs of L plotted against ¢y are presented in
figure 3(b). As for the solutions with n = m = 2, L increases as ¢y increases although for
p = 0 the width for ¢, in region 2 is less than in ragion 1.

The solitary wave solutions forn = m =2 and n = m = % ascend, relative to the
barycentric reference frame (7), at a speed greater than the ascent speed of the fluid melt in
the background state except when ¢y belongs to region 2, in which case the solitary wave
descends at a speed greater than the descent speed of the solid matrix in the background
state.

Finally, consider compressive solitary wave solutions with n = m = % and p = 3.
We have Ny = 0,155 and N; = 0.33". It follows from the results of section 5 that for
N2 < ¢ < 1, f(4) does not have a simple zero at + = 0 and therefore a compressive
solitary wave solution of the kind constdered here does not exist. For ¢p = Na, f(vr} does
have a simple zero at ¥ == 0 since m -’- Suppose that Ny < ¢p < Nz Then from (21)
and (33) with &7 taken as the charactcr;stlc length,

d¢) 2941 — o)

A (E (1 — ¢0)*(1 +3¢0)°

gy} (82)

where

- 21—go)?, [ (1= o221 + 0B\
g) = —(1+0)(1 = ¥) + (1 = 3¢) In ¥ + 2 ((1 TP e )

(83)

Let 9rmin be the largest zero of (¥}, and therefore of g(3r), as ¥ decreases fromyr =1 It
is found numerically that for Ny < ¢ < Nz, 0 < tyin < 1 which is in agreement with the
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results of section 4. The values of Yy, which were calculated using subroutine DZBREN
[25], with the corresponding values of ' (¥mi,) for ¢g in the range Ny < ¢y < N are listed
in table 4. Since 0 < f'(Ymin) < 00, it follows that Ymin is a simple zero of f{(i). The
solitary wave is given by

r = :!:(1 — do) (1 4 3¢g) 12 [V dy
N3 Yo W2 — o) [g (¢ )12

Graphs of the solitary wave for specific values of ¢y are presented in figure 4(a). As ¢y
increases from Nj to N3 the depth of the solitary wave increases steadily from 0 to 1.

(84)

Table 4. The zero, ¥min, of f(¥r} where f(i) is given by (82} and the corresponding value of
Fi{Ymm) forn=m = %, p = 3. Since 0 < f'(Y¥min) < 00, ¥min I5 a simple zero of F{¥).

d’U 1|'5'm:n f’w’min)
0.156 0967 1.389 x 1075
0.160 0871 9268 x 10~°
0180 0502 9.660 x 102
0200 0271 5.045 x 1072
0220 0.133 1311 x 10~}
0.240 0.055 2411 % 10™1
0.260 0.018 3522 x 10~F
0.280  0.003 4,204 x 10-1-

0300 2x10°¢ 3.857 x 10~!
0.320 3 % 10~ 1.907 x 10~*
Q330  Ix 1079 4987 x 10-2

1203 (b)
800
600
300
T T T = 4 u. T T T r
—80 -30 ? 30 7' 80 0.5 0.20 0;,,2.5 0.30 0.35

Figure 4. (u4) Comparison of compressive solitary wave solutions for n = m = 1';, p=3
o =.0.16 (— — —); ¢ = 0.2 (- —-); ¢ =0.25 (----); and by = 0.3 (—). () Width, L,
of the compressive solitary wave at half its depth forn =m = %, p=3

The width, L, of the solitary wave at half its depth is given by twice the value of ¢
evaluated at ¢ = %(I -+ Y¥min). A graph of L against ¢ is plotted in figure 4(b). As ¢y
increases from N) to N the width L decreases steadily from infinity to 14.2.

The solitary wave solution forn = m = % and p = 3 ascends, relative to the barycentric
frame (7), at a speed less than the ascent speed of the fluid melt in the background state:
0 < ¢ < w. This is satisfied by all solitary wave solutions for p > 2 with (¢g, #) in region
1B of the (¢, n)-plane. Further, it is only in this region that the depth of the solitary wave
may not extend to ¢ = Q.
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7. Concluding remarks

‘We have extended the results of Nakayama and Mason [1] on the existence of compressive
solitary waves from the idealized case ¢ = 0 to the complete range of values 0 < ¢g < 1.
The simple power law relating permeability fo voidage was generalized to eguation (2)
which has an empirical basis. There are two regions of existence in the (go, 7)-plane when
0 € p < 1 which evolve into one region for p 2 1.

When m = 1 > 1 assumes half-integer values in the idealized limit ¢o = 0, the solitary
waves have oscillatory structure and remain completely compressive [1]. When n =m = %
and p = 0, 1 and 2 the oscillatory solitary waves remain completely compressive for ¢y
belonging to region 1 of the (¢o, r)-plane but, for a range of values of ¢y in region 2, part .
of the oscillatory solitary wave was rarefactive. When considering a fifth order Korteweg—
de Vries equation, Kawahara [26] found oscillatory solitary wave solutions which take both
rarefactive and compressive values.

A. difference between the idealized limit ¢9 = 0 and ¢y > 0 is that in the latter case
compressive solitary wave solutions exist which do not extend to ¥ = 0. This occurs only
when p > 2 and (¢, ) belongs to region 1B of the (¢q, n)-plane. We illustrated this
exceptional case by considering the solution for # == m = é and p = 3. The depth of the
solitary wave increased from O to 1 as ¢y increased from Ny = 0.153 to Ny = 0.33"..

The ascent speed of the solitary wave exceeded the ascent speed of the fluid melt in
the background state except in two cases. The first case was for 0 € p < 1 when (go, 1)
belongs to region 2. The solitary wave descended with a speed greater than the descent
speed of the solid matrix in the background state. The second case was for p > 2 when
{¢g, 1) belongs to region 1B. The solitary wave ascended at a speed less than that of the
fluid melt. For this case the depth of the solitary wave may be less than unity. All velocities
were measured relative to a barycentric reference frame.

We found that the width of the solitary wave at half its depth increased as ¢y increased
foop=0,l,2withrn=m=2andn=m= %, although the width in region 2 was less
than that in region 1. However, for p =3 andn =m = %, the width decreased as ¢
increased.
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Appendix A. Necessary regions of existence in the (¢, n)-plane

The discriminant, A, of the quadratic form on the numerator of (39) is
A=dnn+1-p)2-p). (Al)

The subsequent analysis depends on the value of p. We will outline the analysis for
0 € p < 1 and then state the results for p < 1 which are derived similarly.

When 0 € p < 1 the quadratic form on the numerator of (39) has two real roots, Nj
and Ns, defined by (41) and (43), which are distinct if n > 0. The necessary condition (39)
takes the form

(N1 — do)(Ns — ¢p)
(N4 — ¢0)

=0 (A2)
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where Ny is defined by (42). Graphs of the curves ¢y = Ny(n, p), ¢o = Na(n, p) and
¢o = Nsin, p) are illustrated in figures 1(g) and 1(b) for p =0 and p = -%, respectively.
It can be verified that Ny <O for0<n <1, 0< Ny <lforrn>1,0< Ny < 1and
0 <Ns <1forn>0and Ny < Ny < Ns for n > 0. On the curve ¢p = Nyi(n, p),
Ff(¥) = oo by (33) and a compressive solitary wave solution does not exist. For a
compressive solitary wave solution to exist it is therefore necessary that the point (¢p, n)
lie either in region 1 or region 2 defined by (40) and illustrated in figures 1{a) and 1{b).
On the boundary curves ¢9 = Ny (n, p) and ¢y = Ns(n, p) higher derivatives of fF(3) at
1 = 1 would have to be examined to determine if a compressive wave solution actually
exists, A compressive solitary wave solution does not exist at the boundary points ¢ = 0,
n=1and ¢g =0, n =0 for all p 20, because G(x) = 0 by (34).

The evolution of the necessary region of existence as p increases from p = 1 to values
of p > 2 is illustrated in figures 1{c) to I{f}. When p=1, Ny =Ns=1 Forp > 1
there is only one necessary region of existence, namely region 1. As p increases from | to
2, region 1 extends further into the (¢, »)-plane. When p=2and n =1, G(x) = 0 and
a compressive solitary wave solution does not exist; when p = 2, region 1 consists of the
part n > 1 of the (¢g, n)-plane. When p > 2, region 1 extends into the part # < 1 of the
(¢, n)-plane. In appendix B, region 1 will be subdivided into regions 1A and 1B as shown
in figure 1().

Appendix B. Range of 7> in a compressive solitary wave solution

‘We outline the analysis for 0 € p < 1 and state the results for p > 1.
Suppose that 0 € p < 1. We show that when a compressive solitary wave solution
exists the range of ¢ extends to ¥ = 0. From (34), G(1) =0, G'(1) =0 and if n > O,

G(0) = (1 — ¢o)(n+ 1 — p}(N2 — o). (B1)
Also

&6 (1= gp)Px"2
dx? {1 — dgx)?

Consider first points (¢, #) which lie in region 1 so that 0 € ¢y < Ny(n, p). Then
G"(x) > 0 for 0 < x < 1 and therefore G(x) is concave up for 0 < x < 1. Since G(1) =0
and G'(1) = 0 it follows that G(x) > 0 for 0 £ x < 1. Also the terms outside the integral
in (33) are positive since ¢ < Na(n, p). Hence f(¥) > 0 for 0 < ¢ < | and the range
of the compressive solitary wave extends to = 0. Consider next points (¢, n) which lie
in region 2 so that Na(n, p} < ¢ < Ns(n, p). If 0 < n < 1 then N} < 0 and therefore
G"(x) <0 for 0 < x < I; G(x) is concave down for 0 < x < 1 and since G(1) =0 and
G =0if follows that G(x) < 0for0gx < 1. fun>1then0 < Ni(n,p) <1 and
G"(x) < 0 for Ni(n, p)/¢po < x < 1 and G/(x) > O for 0 < x < Ny(n, p)/do; G(x) is
concave down for Ny(n, p)/dp < x < 1 and concave up for O < x < Ni(n, p)/¢o. Since
G(l) = 0, G'(1) = 0 and G{0) < 0 it follows that G(x) < O for 0 < x < 1, but the
terms outside the integral in (33) are negative when ¢y > Ny(n, p). Thus f(¥) > O for
0 < < 1 and the range of the solitary wave extends to v = 0.

Similarly it can be shown, when 1 € p £ 2 and also when p > 2 and (¢, 1) belongs
to region 1A defined by (47), that the range of ¥ extends to 9y = 0. When p > 2 and
(¢6, n) belongs to region 1B defined by (48), the range of Y may not extend to 1 = 0;
since G(0) < 0 it follows that G{x) < 0 for part of the interval 0 € x < 1 and therefore
f(§) may vanish at some point ¥ = Yy > 0.

={n+1-p)n+2— p)(N1 — $ox}(Ns — ¢ox) - (B2)
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